
how not to be seen in the Cloud

When users interact with a server, either exposed to the Internet or within an intranet, privacy
issues
arise. They become extremely worrying in public clouds, where data are provided to an
infrastructure hosted outside user's premises. The right to
act without observation
becomes even more important in Desktop-as-a-Service (DaaS) environments. When
somebody stores personal information on her account at a DaaS like VDD, she would be sure
that her data would remain safe and nobody but the owner can read them. It would be also
desirable to make the whole list of operations performed by a user on her account, obscure or
meaningless for the system administrator.
At the moment, VDD project is focusing on how to face such a problem. We have performed a
preliminary experimental evaluation of a Progressive Privacy solution for a DaaS system. Prog
ressive Privacy
is a privacy preserving model which can be configurable (possibly on-demand) by a user not
only quantitatively but rather qualitatively, i.e., the user is allowed to discriminate what type of
information must be preserved and to what extent, according to her desired profiles of privacy.
To this end, a lightweight client-side proxy named
Hedge Proxy
has been designed such that non-intelligible user contents and non-traceable user actions are
guaranteed by enabling
Homomorphic Encryption
,
Oblivious Transfer
and
Query Obfuscation
schemes in the proxy.

Homomorphic Encryption is an encryption scheme based on algebraic properties of
encrypted messages, i.e. being operands of functions returning coherent encrypted results.
Consider the following scenario. A user owns a message x she
wishes to keep private while copying it at a service provider space. Traditional encryption
schemes are sufficient to meet the privacy requirement. However, with traditional schemes if
the user wishes to perform some function
f
on

 1 / 3

how not to be seen in the Cloud

x
, a decryption of
x
server-side is required at some point, thus revealing
x
to the service provider and violating user's privacy. With homomorphic encryption it is possible
to copy
x
in an encrypted form at the service provider space; the user performs any
f
on it and obtains a result which is the encrypted value of
f(x)
. In this way, the user can let the service provider work on her data that are kept private, as the
service provider has no means to read
x
.

 Once the data are protected using homomorphic encryption schemes, it may be required that
also the function f representing a computation to be performed on the encrypted content is to
be maintained private. In Oblivious Transfer, one party, the sender,
transmits some information to another party, the chooser, in a manner that protects both of
them: the chooser is assured that the sender does not learn which part of the information it is
received, while the sender is assured that the chooser does not receive more information than
that it is entitled to. In the context of privacy preserving in DaaS, the latter guarantee can be
relaxed since all the information is owned by the chooser (the cloud client) or openly offered to
the chooser (i.e. applications of the Cloud system). In DaaS, only the first oblivious transfer
guarantee is relevant; that is, the provider does not learn what piece of data is requested and
what function is requested to be executed on it.

Query Obfuscation is another privacy preserving scheme that can be successfully used in
case it is required to guarantee privacy of data computations. The scheme consists in
introducing noisy or fake queries at random or mixing queries from different users so that cloud
providers are not able to know which actions are executing on the data.

 Preliminary results of Hedge Proxy evaluation are used to assess the performances
experienced by users of VDD against the progressive privacy achievements that can be
obtained. As expected, the perceived client performances when using VDD highly decrease
when augmenting the level of privacy protection (e.g., using large key encryption size, high
obfuscation density). Nevertheless, experiments show that the system can reach fair level of
privacy of a light data stream encrypted using small keys without significantly
deteriorating user experienced performances
; that is, they show that the above mentioned cryptographic schemes can be practically used
even in the cloud computing context, despite their high communication and computation costs.

 Currently, a massive series of experiments are being carried out showing which is the latency
experienced by a user that is running common applications on DaaS, such as mailer programs,

 2 / 3

how not to be seen in the Cloud

browsers etc, when increasing data stream size and/or protection level. These results will be
presented when ready; however the communication and computation costs would suggest to
split users in separate classes where each user in a certain class can exploit the advantages of
progressive privacy using different key sizes and obfuscation levels according to their status.

 3 / 3

